Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Prediction of Sewer Pipe Deterioration Using Random Forest Classification (1912.04194v1)

Published 9 Dec 2019 in cs.CE, cs.LG, and stat.ML

Abstract: Wastewater infrastructure systems deteriorate over time due to a combination of physical and chemical factors. Failure of this significant infrastructure could affect important social, environmental, and economic impacts. Furthermore, recognizing the optimized timeline for inspection of sewer pipelines are challenging tasks for the utility managers and other authorities. Regular examination of sewer networks is not cost-effective due to limited time and high cost of assessment technologies and a large inventory of pipes. To avoid such obstacles, various researchers endeavored to improve infrastructure condition assessment methodologies to maintain sewer pipe systems at the desired condition. Sewer condition prediction models are developed to provide a framework to forecast the future condition of pipes to schedule inspection frequencies. The main goal of this study is to develop a predictive model for wastewater pipes using random forest classification. Predictive models can effectively predict sewer pipe condition and can increase the certainty level of the predictive results and decrease uncertainty in the current condition of wastewater pipes. The developed random forest classification model has achieved a stratified test set false negative rate, the false positive rate, and an excellent area under the ROC curve of 0.81 in a case study application for the City of LA, California. An area under the ROC curve > 0.80 indicates the developed model is an "excellent" choice for predicting the condition of individual pipes in a sewer network. The deterioration models can be used in the industry to improve the inspection timeline and maintenance planning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.