Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust and Sample Optimal Algorithms for PSD Low-Rank Approximation (1912.04177v5)

Published 9 Dec 2019 in cs.DS and cs.LG

Abstract: Recently, Musco and Woodruff (FOCS, 2017) showed that given an $n \times n$ positive semidefinite (PSD) matrix $A$, it is possible to compute a $(1+\epsilon)$-approximate relative-error low-rank approximation to $A$ by querying $O(nk/\epsilon{2.5})$ entries of $A$ in time $O(nk/\epsilon{2.5} +n k{\omega-1}/\epsilon{2(\omega-1)})$. They also showed that any relative-error low-rank approximation algorithm must query $\Omega(nk/\epsilon)$ entries of $A$, this gap has since remained open. Our main result is to resolve this question by obtaining an optimal algorithm that queries $O(nk/\epsilon)$ entries of $A$ and outputs a relative-error low-rank approximation in $O(n(k/\epsilon){\omega-1})$ time. Note, our running time improves that of Musco and Woodruff, and matches the information-theoretic lower bound if the matrix-multiplication exponent $\omega$ is $2$. We then extend our techniques to negative-type distance matrices. Bakshi and Woodruff (NeurIPS, 2018) showed a bi-criteria, relative-error low-rank approximation which queries $O(nk/\epsilon{2.5})$ entries and outputs a rank-$(k+4)$ matrix. We show that the bi-criteria guarantee is not necessary and obtain an $O(nk/\epsilon)$ query algorithm, which is optimal. Our algorithm applies to all distance matrices that arise from metrics satisfying negative-type inequalities, including $\ell_1, \ell_2,$ spherical metrics and hypermetrics. Next, we introduce a new robust low-rank approximation model which captures PSD matrices that have been corrupted with noise. While a sample complexity lower bound precludes sublinear algorithms for arbitrary PSD matrices, we provide the first sublinear time and query algorithms when the corruption on the diagonal entries is bounded. As a special case, we show sample-optimal sublinear time algorithms for low-rank approximation of correlation matrices corrupted by noise.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.