Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Object Detection in Large Images using Deep Reinforcement Learning (1912.03966v2)

Published 9 Dec 2019 in cs.CV

Abstract: Traditionally, an object detector is applied to every part of the scene of interest, and its accuracy and computational cost increases with higher resolution images. However, in some application domains such as remote sensing, purchasing high spatial resolution images is expensive. To reduce the large computational and monetary cost associated with using high spatial resolution images, we propose a reinforcement learning agent that adaptively selects the spatial resolution of each image that is provided to the detector. In particular, we train the agent in a dual reward setting to choose low spatial resolution images to be run through a coarse level detector when the image is dominated by large objects, and high spatial resolution images to be run through a fine level detector when it is dominated by small objects. This reduces the dependency on high spatial resolution images for building a robust detector and increases run-time efficiency. We perform experiments on the xView dataset, consisting of large images, where we increase run-time efficiency by 50% and use high resolution images only 30% of the time while maintaining similar accuracy as a detector that uses only high resolution images.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.