Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bi-Semantic Reconstructing Generative Network for Zero-shot Learning (1912.03877v3)

Published 9 Dec 2019 in cs.CV and cs.LG

Abstract: Many recent methods of zero-shot learning (ZSL) attempt to utilize generative model to generate the unseen visual samples from semantic descriptions and random noise. Therefore, the ZSL problem becomes a traditional supervised classification problem. However, most of the existing methods based on the generative model only focus on the quality of synthesized samples at the training stage, and ignore the importance of the zero-shot recognition stage. In this paper, we consider both the above two points and propose a novel approach. Specially, we select the Generative Adversarial Network (GAN) as our generative model. In order to improve the quality of synthesized samples, considering the internal relation of the semantic description in the semantic space as well as the fact that the seen and unseen visual information belong to different domains, we propose a bi-semantic reconstructing (BSR) component which contain two different semantic reconstructing regressors to lead the training of GAN. Since the semantic descriptions are available during the training stage, to further improve the ability of classifier, we combine the visual samples and semantic descriptions to train a classifier. At the recognition stage, we naturally utilize the BSR component to transfer the visual features and semantic descriptions, and concatenate them for classification. Experimental results show that our method outperforms the state of the art on several ZSL benchmark datasets with significant improvements.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.