Patch Aggregator for Scene Text Script Identification (1912.03818v1)
Abstract: Script identification in the wild is of great importance in a multi-lingual robust-reading system. The scripts deriving from the same language family share a large set of characters, which makes script identification a fine-grained classification problem. Most existing methods make efforts to learn a single representation that combines the local features by making a weighted average or other clustering methods, which may reduce the discriminatory power of some important parts in each script for the interference of redundant features. In this paper, we present a novel module named Patch Aggregator (PA), which learns a more discriminative representation for script identification by taking into account the prediction scores of local patches. Specifically, we design a CNN-based method consisting of a standard CNN classifier and a PA module. Experiments demonstrate that the proposed PA module brings significant performance improvements over the baseline CNN model, achieving the state-of-the-art results on three benchmark datasets for script identification: SIW-13, CVSI 2015 and RRC-MLT 2017.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.