Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Structure Adaptation for Continual Learning (1912.03624v2)

Published 8 Dec 2019 in cs.LG and stat.ML

Abstract: Continual Learning is a learning paradigm where learning systems are trained with sequential or streaming tasks. Two notable directions among the recent advances in continual learning with neural networks are ($i$) variational Bayes based regularization by learning priors from previous tasks, and, ($ii$) learning the structure of deep networks to adapt to new tasks. So far, these two approaches have been orthogonal. We present a novel Bayesian approach to continual learning based on learning the structure of deep neural networks, addressing the shortcomings of both these approaches. The proposed model learns the deep structure for each task by learning which weights to be used, and supports inter-task transfer through the overlapping of different sparse subsets of weights learned by different tasks. Experimental results on supervised and unsupervised benchmarks shows that our model performs comparably or better than recent advances in continual learning setting.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.