Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Overlapping Communities and the Prediction of Missing Links in Multiplex Networks (1912.03496v2)

Published 7 Dec 2019 in physics.soc-ph and cs.SI

Abstract: Multiplex networks are a representation of real-world complex systems as a set of entities (i.e. nodes) connected via different types of connections (i.e. layers). The observed connections in these networks may not be complete and the link prediction task is about locating the missing links across layers. Here, the main challenge is about collecting relevant evidence from different layers to assist the link prediction task. It is known that co-membership in communities increases the likelihood of connectivity between nodes. We discuss that co-membership in the communities of the similar layers augments the chance of connectivity. The layers are considered similar if they show significant inter-layer community overlap. Moreover, we found that although the presence of link is correlated in layers but the extent of this correlation is not the same across different communities. Our proposed, ML-BNMTF, as a link prediction method in multiplex networks, is devised based on these findings. ML-BNMTF outperforms baseline methods specifically when the global link overlap is low.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.