Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial Analysis of Natural Language Inference Systems (1912.03441v1)

Published 7 Dec 2019 in cs.CL

Abstract: The release of large natural language inference (NLI) datasets like SNLI and MNLI have led to rapid development and improvement of completely neural systems for the task. Most recently, heavily pre-trained, Transformer-based models like BERT and MT-DNN have reached near-human performance on these datasets. However, these standard datasets have been shown to contain many annotation artifacts, allowing models to shortcut understanding using simple fallible heuristics, and still perform well on the test set. So it is no surprise that many adversarial (challenge) datasets have been created that cause models trained on standard datasets to fail dramatically. Although extra training on this data generally improves model performance on just that type of data, transferring that learning to unseen examples is still partial at best. This work evaluates the failures of state-of-the-art models on existing adversarial datasets that test different linguistic phenomena, and find that even though the models perform similarly on MNLI, they differ greatly in their robustness to these attacks. In particular, we find syntax-related attacks to be particularly effective across all models, so we provide a fine-grained analysis and comparison of model performance on those examples. We draw conclusions about the value of model size and multi-task learning (beyond comparing their standard test set performance), and provide suggestions for more effective training data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube