Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dissecting the Graphcore IPU Architecture via Microbenchmarking (1912.03413v1)

Published 7 Dec 2019 in cs.DC, cs.AR, and cs.PF

Abstract: This report focuses on the architecture and performance of the Intelligence Processing Unit (IPU), a novel, massively parallel platform recently introduced by Graphcore and aimed at Artificial Intelligence/Machine Learning (AI/ML) workloads. We dissect the IPU's performance behavior using microbenchmarks that we crafted for the purpose. We study the IPU's memory organization and performance. We study the latency and bandwidth that the on-chip and off-chip interconnects offer, both in point-to-point transfers and in a spectrum of collective operations, under diverse loads. We evaluate the IPU's compute power over matrix multiplication, convolution, and AI/ML primitives. We discuss actual performance in comparison with its theoretical limits. Our findings reveal how the IPU's architectural design affects its performance. Moreover, they offer simple mental models to predict an application's performance on the IPU, on the basis of the computation and communication steps it involves. This report is the natural extension to a novel architecture of a continuing effort of ours that focuses on the microbenchmark-based discovery of massively parallel architectures.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube