Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Audio-attention discriminative language model for ASR rescoring (1912.03363v2)

Published 6 Dec 2019 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: End-to-end approaches for automatic speech recognition (ASR) benefit from directly modeling the probability of the word sequence given the input audio stream in a single neural network. However, compared to conventional ASR systems, these models typically require more data to achieve comparable results. Well-known model adaptation techniques, to account for domain and style adaptation, are not easily applicable to end-to-end systems. Conventional HMM-based systems, on the other hand, have been optimized for various production environments and use cases. In this work, we propose to combine the benefits of end-to-end approaches with a conventional system using an attention-based discriminative LLM that learns to rescore the output of a first-pass ASR system. We show that learning to rescore a list of potential ASR outputs is much simpler than learning to generate the hypothesis. The proposed model results in 8% improvement in word error rate even when the amount of training data is a fraction of data used for training the first-pass system.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.