Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word classification (1912.03223v1)

Published 6 Dec 2019 in cs.CL and cs.LG

Abstract: In recent years, long short-term memory neural networks (LSTMs) have been applied quite successfully to problems in handwritten text recognition. However, their strength is more located in handling sequences of variable length than in handling geometric variability of the image patterns. Furthermore, the best results for LSTMs are often based on large-scale training of an ensemble of network instances. In this paper, an end-to-end convolutional LSTM Neural Network is used to handle both geometric variation and sequence variability. We show that high performances can be reached on a common benchmark set by using proper data augmentation for just five such networks using a proper coding scheme and a proper voting scheme. The networks have similar architectures (Convolutional Neural Network (CNN): five layers, bidirectional LSTM (BiLSTM): three layers followed by a connectionist temporal classification (CTC) processing step). The approach assumes differently-scaled input images and different feature map sizes. Two datasets are used for evaluation of the performance of our algorithm: A standard benchmark RIMES dataset (French), and a historical handwritten dataset KdK (Dutch). Final performance obtained for the word-recognition test of RIMES was 96.6%, a clear improvement over other state-of-the-art approaches. On the KdK dataset, our approach also shows good results. The proposed approach is deployed in the Monk search engine for historical-handwriting collections.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.