Papers
Topics
Authors
Recent
2000 character limit reached

Learning multivariate functions with low-dimensional structures using polynomial bases (1912.03195v4)

Published 6 Dec 2019 in math.NA and cs.NA

Abstract: In this paper we propose a method for the approximation of high-dimensional functions over finite intervals with respect to complete orthonormal systems of polynomials. An important tool for this is the multivariate classical analysis of variance (ANOVA) decomposition. For functions with a low-dimensional structure, i.e., a low superposition dimension, we are able to achieve a reconstruction from scattered data and simultaneously understand relationships between different variables.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.