Learning multivariate functions with low-dimensional structures using polynomial bases (1912.03195v4)
Abstract: In this paper we propose a method for the approximation of high-dimensional functions over finite intervals with respect to complete orthonormal systems of polynomials. An important tool for this is the multivariate classical analysis of variance (ANOVA) decomposition. For functions with a low-dimensional structure, i.e., a low superposition dimension, we are able to achieve a reconstruction from scattered data and simultaneously understand relationships between different variables.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.