Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception (1912.03184v3)

Published 6 Dec 2019 in cs.CL, cs.AI, and cs.IR

Abstract: Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader's perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.