Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient multivariate approximation on the cube (1912.03090v3)

Published 6 Dec 2019 in math.NA and cs.NA

Abstract: We combine a periodization strategy for weighted $L_{2}$-integrands with efficient approximation methods in order to approximate multivariate non-periodic functions on the high-dimensional cube $\left[-\frac{1}{2},\frac{1}{2}\right]{d}$. Our concept allows to determine conditions on the $d$-variate torus-to-cube transformations ${\psi:\left[-\frac{1}{2},\frac{1}{2}\right]{d}\to\left[-\frac{1}{2},\frac{1}{2}\right]{d}}$ such that a non-periodic function is transformed into a smooth function in the Sobolev space $\mathcal H{m}(\mathbb{T}{d})$ when applying $\psi$. We adapt some $L_{\infty}(\mathbb{T}{d})$- and $L_{2}(\mathbb{T}{d})$-approximation error estimates for single rank-$1$ lattice approximation methods and adjust algorithms for the fast evaluation and fast reconstruction of multivariate trigonometric polynomials on the torus in order to apply these methods to the non-periodic setting. We illustrate the theoretical findings by means of numerical tests in up to $d=5$ dimensions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.