Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient multivariate approximation on the cube (1912.03090v3)

Published 6 Dec 2019 in math.NA and cs.NA

Abstract: We combine a periodization strategy for weighted $L_{2}$-integrands with efficient approximation methods in order to approximate multivariate non-periodic functions on the high-dimensional cube $\left[-\frac{1}{2},\frac{1}{2}\right]{d}$. Our concept allows to determine conditions on the $d$-variate torus-to-cube transformations ${\psi:\left[-\frac{1}{2},\frac{1}{2}\right]{d}\to\left[-\frac{1}{2},\frac{1}{2}\right]{d}}$ such that a non-periodic function is transformed into a smooth function in the Sobolev space $\mathcal H{m}(\mathbb{T}{d})$ when applying $\psi$. We adapt some $L_{\infty}(\mathbb{T}{d})$- and $L_{2}(\mathbb{T}{d})$-approximation error estimates for single rank-$1$ lattice approximation methods and adjust algorithms for the fast evaluation and fast reconstruction of multivariate trigonometric polynomials on the torus in order to apply these methods to the non-periodic setting. We illustrate the theoretical findings by means of numerical tests in up to $d=5$ dimensions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.