Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adversarial Risk via Optimal Transport and Optimal Couplings (1912.02794v2)

Published 5 Dec 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Modern machine learning algorithms perform poorly on adversarially manipulated data. Adversarial risk quantifies the error of classifiers in adversarial settings; adversarial classifiers minimize adversarial risk. In this paper, we analyze adversarial risk and adversarial classifiers from an optimal transport perspective. We show that the optimal adversarial risk for binary classification with 0-1 loss is determined by an optimal transport cost between the probability distributions of the two classes. We develop optimal transport plans (probabilistic couplings) for univariate distributions such as the normal, the uniform, and the triangular distribution. We also derive optimal adversarial classifiers in these settings. Our analysis leads to algorithm-independent fundamental limits on adversarial risk, which we calculate for several real-world datasets. We extend our results to general loss functions under convexity and smoothness assumptions.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.