Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GPU Computing with Python: Performance, Energy Efficiency and Usability (1912.02607v1)

Published 5 Dec 2019 in cs.DC

Abstract: In this work, we examine the performance, energy efficiency and usability when using Python for developing HPC codes running on the GPU. We investigate the portability of performance and energy efficiency between CUDA and OpenCL; between GPU generations; and between low-end, mid-range and high-end GPUs. Our findings show that the impact of using Python is negligible for our applications, and furthermore, CUDA and OpenCL applications tuned to an equivalent level can in many cases obtain the same computational performance. Our experiments show that performance in general varies more between different GPUs than between using CUDA and OpenCL. We also show that tuning for performance is a good way of tuning for energy efficiency, but that specific tuning is needed to obtain optimal energy efficiency.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.