Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

ROI-Wise Material Decomposition in Spectral Photon-Counting CT (1912.02483v1)

Published 5 Dec 2019 in eess.IV

Abstract: Spectral photon-counting X-ray CT (sCT) opens up new possibilities for the quantitative measurement of materials in an object, compared to conventional energy-integrating CT or dual energy CT. However, achieving reliable and accurate material decomposition in sCT is extremely challenging, due to similarity between different basis materials, strong quantum noise and photon-counting detector limitations. We propose a novel material decomposition method that works in a region-wise manner. The method consists in optimizing basis materials based on spatio-energy segmentation of regions-of-interests (ROIs) in sCT images and performing a fine material decomposition involving optimized decomposition matrix and sparsity regularization. The effectiveness of the proposed method was validated on both digital and physical data. The results showed that the proposed ROI-wise material decomposition method presents clearly higher reliability and accuracy compared to common decomposition methods based on total variation (TV) or L1-norm (lasso) regularization.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.