Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Predict Explainable Plots for Neural Story Generation (1912.02395v2)

Published 5 Dec 2019 in cs.CL

Abstract: Story generation is an important natural language processing task that aims to generate coherent stories automatically. While the use of neural networks has proven effective in improving story generation, how to learn to generate an explainable high-level plot still remains a major challenge. In this work, we propose a latent variable model for neural story generation. The model treats an outline, which is a natural language sentence explainable to humans, as a latent variable to represent a high-level plot that bridges the input and output. We adopt an external summarization model to guide the latent variable model to learn how to generate outlines from training data. Experiments show that our approach achieves significant improvements over state-of-the-art methods in both automatic and human evaluations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.