Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to Predict Explainable Plots for Neural Story Generation (1912.02395v2)

Published 5 Dec 2019 in cs.CL

Abstract: Story generation is an important natural language processing task that aims to generate coherent stories automatically. While the use of neural networks has proven effective in improving story generation, how to learn to generate an explainable high-level plot still remains a major challenge. In this work, we propose a latent variable model for neural story generation. The model treats an outline, which is a natural language sentence explainable to humans, as a latent variable to represent a high-level plot that bridges the input and output. We adopt an external summarization model to guide the latent variable model to learn how to generate outlines from training data. Experiments show that our approach achieves significant improvements over state-of-the-art methods in both automatic and human evaluations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.