Emergent Mind

Lower Bounds for Non-Convex Stochastic Optimization

(1912.02365)
Published Dec 5, 2019 in math.OC , cs.IT , cs.LG , math.IT , and stat.ML

Abstract

We lower bound the complexity of finding $\epsilon$-stationary points (with gradient norm at most $\epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least $\epsilon{-4}$ queries to find an $\epsilon$ stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of $\epsilon{-3}$ queries, establishing the optimality of recently proposed variance reduction techniques.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.