Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Switching System Perspective and O.D.E. Analysis of Q-Learning Algorithms (1912.02270v3)

Published 4 Dec 2019 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: In this paper, we introduce a unified framework for analyzing a large family of Q-learning algorithms, based on switching system perspectives and ODE-based stochastic approximation. We show that the nonlinear ODE models associated with these Q-learning algorithms can be formulated as switched linear systems, and analyze their asymptotic stability by leveraging existing switching system theories. Our approach provides the first O.D.E. analysis of the asymptotic convergence of various Q-learning algorithms, including asynchronous Q-learning and averaging Q-learning. We also extend the approach to analyze Q-learning with linear function approximation and derive a new sufficient condition for its convergence.

Citations (27)

Summary

We haven't generated a summary for this paper yet.