Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Keyword Aware Influential Community Search in Large Attributed Graphs (1912.02114v1)

Published 4 Dec 2019 in cs.SI and cs.CL

Abstract: We introduce a novel keyword-aware influential community query KICQ that finds the most influential communities from an attributed graph, where an influential community is defined as a closely connected group of vertices having some dominance over other groups of vertices with the expertise (a set of keywords) matching with the query terms (words or phrases). We first design the KICQ that facilitates users to issue an influential CS query intuitively by using a set of query terms, and predicates (AND or OR). In this context, we propose a novel word-embedding based similarity model that enables semantic community search, which substantially alleviates the limitations of exact keyword based community search. Next, we propose a new influence measure for a community that considers both the cohesiveness and influence of the community and eliminates the need for specifying values of internal parameters of a network. Finally, we propose two efficient algorithms for searching influential communities in large attributed graphs. We present detailed experiments and a case study to demonstrate the effectiveness and efficiency of the proposed approaches.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.