Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic proximal splitting algorithm for composite minimization (1912.02039v3)

Published 4 Dec 2019 in math.OC and cs.LG

Abstract: Supported by the recent contributions in multiple branches, the first-order splitting algorithms became central for structured nonsmooth optimization. In the large-scale or noisy contexts, when only stochastic information on the smooth part of the objective function is available, the extension of proximal gradient schemes to stochastic oracles is based on proximal tractability of the nonsmooth component and it has been deeply analyzed in the literature. However, there remained gaps illustrated by composite models where the nonsmooth term is not proximally tractable anymore. In this note we tackle composite optimization problems, where the access only to stochastic information on both smooth and nonsmooth components is assumed, using a stochastic proximal first-order scheme with stochastic proximal updates. We provide $\mathcal{O}\left( \frac{1}{k} \right)$ the iteration complexity (in expectation of squared distance to the optimal set) under the strong convexity assumption on the objective function. Empirical behavior is illustrated by numerical tests on parametric sparse representation models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.