Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Constructing a Corpus for Studying the Effects of Treatments and Substances Reported in PubMed Abstracts (1912.01831v1)

Published 4 Dec 2019 in cs.CL, cs.IR, and cs.LG

Abstract: We present the construction of an annotated corpus of PubMed abstracts reporting about positive, negative or neutral effects of treatments or substances. Our ultimate goal is to annotate one sentence (rationale) for each abstract and to use this resource as a training set for text classification of effects discussed in PubMed abstracts. Currently, the corpus consists of 750 abstracts. We describe the automatic processing that supports the corpus construction, the manual annotation activities and some features of the medical language in the abstracts selected for the annotated corpus. It turns out that recognizing the terminology and the abbreviations is key for determining the rationale sentence. The corpus will be applied to improve our classifier, which currently has accuracy of 78.80% achieved with normalization of the abstract terms based on UMLS concepts from specific semantic groups and an SVM with a linear kernel. Finally, we discuss some other possible applications of this corpus.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.