Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deep Fictitious Play for Finding Markovian Nash Equilibrium in Multi-Agent Games (1912.01809v2)

Published 4 Dec 2019 in math.OC, cs.GT, cs.LG, and q-fin.MF

Abstract: We propose a deep neural network-based algorithm to identify the Markovian Nash equilibrium of general large $N$-player stochastic differential games. Following the idea of fictitious play, we recast the $N$-player game into $N$ decoupled decision problems (one for each player) and solve them iteratively. The individual decision problem is characterized by a semilinear Hamilton-Jacobi-Bellman equation, to solve which we employ the recently developed deep BSDE method. The resulted algorithm can solve large $N$-player games for which conventional numerical methods would suffer from the curse of dimensionality. Multiple numerical examples involving identical or heterogeneous agents, with risk-neutral or risk-sensitive objectives, are tested to validate the accuracy of the proposed algorithm in large group games. Even for a fifty-player game with the presence of common noise, the proposed algorithm still finds the approximate Nash equilibrium accurately, which, to our best knowledge, is difficult to achieve by other numerical algorithms.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.