Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization (1912.01698v1)

Published 3 Dec 2019 in math.OC, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: Saddle-point optimization problems are an important class of optimization problems with applications to game theory, multi-agent reinforcement learning and machine learning. A majority of the rich literature available for saddle-point optimization has focused on the offline setting. In this paper, we study nonstationary versions of stochastic, smooth, strongly-convex and strongly-concave saddle-point optimization problem, in both online (or first-order) and multi-point bandit (or zeroth-order) settings. We first propose natural notions of regret for such nonstationary saddle-point optimization problems. We then analyze extragradient and Frank-Wolfe algorithms, for the unconstrained and constrained settings respectively, for the above class of nonstationary saddle-point optimization problems. We establish sub-linear regret bounds on the proposed notions of regret in both the online and bandit setting.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.