Papers
Topics
Authors
Recent
2000 character limit reached

Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization (1912.01698v1)

Published 3 Dec 2019 in math.OC, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: Saddle-point optimization problems are an important class of optimization problems with applications to game theory, multi-agent reinforcement learning and machine learning. A majority of the rich literature available for saddle-point optimization has focused on the offline setting. In this paper, we study nonstationary versions of stochastic, smooth, strongly-convex and strongly-concave saddle-point optimization problem, in both online (or first-order) and multi-point bandit (or zeroth-order) settings. We first propose natural notions of regret for such nonstationary saddle-point optimization problems. We then analyze extragradient and Frank-Wolfe algorithms, for the unconstrained and constrained settings respectively, for the above class of nonstationary saddle-point optimization problems. We establish sub-linear regret bounds on the proposed notions of regret in both the online and bandit setting.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.