Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Fast deflation Method for Sparse Principal Component Analysis via Subspace Projections (1912.01449v2)

Published 3 Dec 2019 in stat.ML and cs.LG

Abstract: The implementation of conventional sparse principal component analysis (SPCA) on high-dimensional data sets has become a time consuming work. In this paper, a series of subspace projections are constructed efficiently by using Household QR factorization. With the aid of these subspace projections, a fast deflation method, called SPCA-SP, is developed for SPCA. This method keeps a good tradeoff between various criteria, including sparsity, orthogonality, explained variance, balance of sparsity, and computational cost. Comparative experiments on the benchmark data sets confirm the effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube