Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Comparison of Methods for Individual Treatment Effect Detection (1912.01443v1)

Published 3 Dec 2019 in cs.LG, stat.AP, and stat.ML

Abstract: Today, treatment effect estimation at the individual level is a vital problem in many areas of science and business. For example, in marketing, estimates of the treatment effect are used to select the most efficient promo-mechanics; in medicine, individual treatment effects are used to determine the optimal dose of medication for each patient and so on. At the same time, the question on choosing the best method, i.e., the method that ensures the smallest predictive error (for instance, RMSE) or the highest total (average) value of the effect, remains open. Accordingly, in this paper we compare the effectiveness of machine learning methods for estimation of individual treatment effects. The comparison is performed on the Criteo Uplift Modeling Dataset. In this paper we show that the combination of the Logistic Regression method and the Difference Score method as well as Uplift Random Forest method provide the best correctness of Individual Treatment Effect prediction on the top 30\% observations of the test dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.