Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalization Error Bounds Via Rényi-, $f$-Divergences and Maximal Leakage (1912.01439v3)

Published 1 Dec 2019 in cs.IT, cs.LG, math.IT, and math.PR

Abstract: In this work, the probability of an event under some joint distribution is bounded by measuring it with the product of the marginals instead (which is typically easier to analyze) together with a measure of the dependence between the two random variables. These results find applications in adaptive data analysis, where multiple dependencies are introduced and in learning theory, where they can be employed to bound the generalization error of a learning algorithm. Bounds are given in terms of Sibson's Mutual Information, $\alpha-$Divergences, Hellinger Divergences, and $f-$Divergences. A case of particular interest is the Maximal Leakage (or Sibson's Mutual Information of order infinity), since this measure is robust to post-processing and composes adaptively. The corresponding bound can be seen as a generalization of classical bounds, such as Hoeffding's and McDiarmid's inequalities, to the case of dependent random variables.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.