Papers
Topics
Authors
Recent
2000 character limit reached

Overcoming Catastrophic Forgetting by Generative Regularization (1912.01238v3)

Published 3 Dec 2019 in cs.LG and stat.ML

Abstract: In this paper, we propose a new method to overcome catastrophic forgetting by adding generative regularization to Bayesian inference framework. Bayesian method provides a general framework for continual learning. We could further construct a generative regularization term for all given classification models by leveraging energy-based models and Langevin-dynamic sampling to enrich the features learned in each task. By combining discriminative and generative loss together, we empirically show that the proposed method outperforms state-of-the-art methods on a variety of tasks, avoiding catastrophic forgetting in continual learning. In particular, the proposed method outperforms baseline methods over 15% on the Fashion-MNIST dataset and 10% on the CUB dataset

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.