Papers
Topics
Authors
Recent
2000 character limit reached

Structure Learning with Similarity Preserving (1912.01197v1)

Published 3 Dec 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Leveraging on the underlying low-dimensional structure of data, low-rank and sparse modeling approaches have achieved great success in a wide range of applications. However, in many applications the data can display structures beyond simply being low-rank or sparse. Fully extracting and exploiting hidden structure information in the data is always desirable and favorable. To reveal more underlying effective manifold structure, in this paper, we explicitly model the data relation. Specifically, we propose a structure learning framework that retains the pairwise similarities between the data points. Rather than just trying to reconstruct the original data based on self-expression, we also manage to reconstruct the kernel matrix, which functions as similarity preserving. Consequently, this technique is particularly suitable for the class of learning problems that are sensitive to sample similarity, e.g., clustering and semisupervised classification. To take advantage of representation power of deep neural network, a deep auto-encoder architecture is further designed to implement our model. Extensive experiments on benchmark data sets demonstrate that our proposed framework can consistently and significantly improve performance on both evaluation tasks. We conclude that the quality of structure learning can be enhanced if similarity information is incorporated.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.