Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning to Super Resolve Intensity Images from Events (1912.01196v3)

Published 3 Dec 2019 in cs.CV

Abstract: An event camera detects per-pixel intensity difference and produces asynchronous event stream with low latency, high dynamic range, and low power consumption. As a trade-off, the event camera has low spatial resolution. We propose an end-to-end network to reconstruct high resolution, high dynamic range (HDR) images directly from the event stream. We evaluate our algorithm on both simulated and real-world sequences and verify that it captures fine details of a scene and outperforms the combination of the state-of-the-art event to image algorithms with the state-of-the-art super resolution schemes in many quantitative measures by large margins. We further extend our method by using the active sensor pixel (APS) frames or reconstructing images iteratively.

Citations (73)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube