Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Online Planning for Continual Lifelong Learning (1912.01188v2)

Published 3 Dec 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: We study learning control in an online reset-free lifelong learning scenario, where mistakes can compound catastrophically into the future and the underlying dynamics of the environment may change. Traditional model-free policy learning methods have achieved successes in difficult tasks due to their broad flexibility, but struggle in this setting, as they can activate failure modes early in their lifetimes which are difficult to recover from and face performance degradation as dynamics change. On the other hand, model-based planning methods learn and adapt quickly, but require prohibitive levels of computational resources. We present a new algorithm, Adaptive Online Planning (AOP), that achieves strong performance in this setting by combining model-based planning with model-free learning. By approximating the uncertainty of the model-free components and the planner performance, AOP is able to call upon more extensive planning only when necessary, leading to reduced computation times, while still gracefully adapting behaviors in the face of unpredictable changes in the world -- even when traditional RL fails.

Citations (13)

Summary

We haven't generated a summary for this paper yet.