Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sequential Classification with Empirically Observed Statistics (1912.01170v3)

Published 3 Dec 2019 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: Motivated by real-world machine learning applications, we consider a statistical classification task in a sequential setting where test samples arrive sequentially. In addition, the generating distributions are unknown and only a set of empirically sampled sequences are available to a decision maker. The decision maker is tasked to classify a test sequence which is known to be generated according to either one of the distributions. In particular, for the binary case, the decision maker wishes to perform the classification task with minimum number of the test samples, so, at each step, she declares that either hypothesis 1 is true, hypothesis 2 is true, or she requests for an additional test sample. We propose a classifier and analyze the type-I and type-II error probabilities. We demonstrate the significant advantage of our sequential scheme compared to an existing non-sequential classifier proposed by Gutman. Finally, we extend our setup and results to the multi-class classification scenario and again demonstrate that the variable-length nature of the problem affords significant advantages as one can achieve the same set of exponents as Gutman's fixed-length setting but without having the rejection option.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.