Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Dimensionality Reduction to Optimize t-SNE (1912.01098v1)

Published 2 Dec 2019 in cs.LG and stat.ML

Abstract: t-SNE is a popular tool for embedding multi-dimensional datasets into two or three dimensions. However, it has a large computational cost, especially when the input data has many dimensions. Many use t-SNE to embed the output of a neural network, which is generally of much lower dimension than the original data. This limits the use of t-SNE in unsupervised scenarios. We propose using \textit{random} projections to embed high dimensional datasets into relatively few dimensions, and then using t-SNE to obtain a two dimensional embedding. We show that random projections preserve the desirable clustering achieved by t-SNE, while dramatically reducing the runtime of finding the embedding.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.