Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging Contextual Embeddings for Detecting Diachronic Semantic Shift (1912.01072v2)

Published 2 Dec 2019 in cs.CL

Abstract: We propose a new method that leverages contextual embeddings for the task of diachronic semantic shift detection by generating time specific word representations from BERT embeddings. The results of our experiments in the domain specific LiverpoolFC corpus suggest that the proposed method has performance comparable to the current state-of-the-art without requiring any time consuming domain adaptation on large corpora. The results on the newly created Brexit news corpus suggest that the method can be successfully used for the detection of a short-term yearly semantic shift. And lastly, the model also shows promising results in a multilingual settings, where the task was to detect differences and similarities between diachronic semantic shifts in different languages.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.