Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Using Laplacian Spectrum as Graph Feature Representation (1912.00735v1)

Published 2 Dec 2019 in cs.LG and stat.ML

Abstract: Graphs possess exotic features like variable size and absence of natural ordering of the nodes that make them difficult to analyze and compare. To circumvent this problem and learn on graphs, graph feature representation is required. A good graph representation must satisfy the preservation of structural information, with two particular key attributes: consistency under deformation and invariance under isomorphism. While state-of-the-art methods seek such properties with powerful graph neural-networks, we propose to leverage a simple graph feature: the graph Laplacian spectrum (GLS). We first remind and show that GLS satisfies the aforementioned key attributes, using a graph perturbation approach. In particular, we derive bounds for the distance between two GLS that are related to the \textit{divergence to isomorphism}, a standard computationally expensive graph divergence. We finally experiment GLS as graph representation through consistency tests and classification tasks, and show that it is a strong graph feature representation baseline.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube