Papers
Topics
Authors
Recent
2000 character limit reached

GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection (1912.00682v5)

Published 2 Dec 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach -- referred to as GeoTrackNet -- for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks and a contrario detection to detect abnormal events. The neural network provides a new means to capture complex and heterogeneous patterns in vessels' behaviours, while the \textit{a contrario} detector takes into account the fact that the learnt distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method compared with state-of-the-art schemes.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.