Rodent: Relevance determination in differential equations (1912.00656v2)
Abstract: We aim to identify the generating, ordinary differential equation (ODE) from a set of trajectories of a partially observed system. Our approach does not need prescribed basis functions to learn the ODE model, but only a rich set of Neural Arithmetic Units. For maximal explainability of the learnt model, we minimise the state size of the ODE as well as the number of non-zero parameters that are needed to solve the problem. This sparsification is realized through a combination of the Variational Auto-Encoder (VAE) and Automatic Relevance Determination (ARD). We show that it is possible to learn not only one specific model for a single process, but a manifold of models representing harmonic signals as well as a manifold of Lotka-Volterra systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.