Papers
Topics
Authors
Recent
2000 character limit reached

Rodent: Relevance determination in differential equations (1912.00656v2)

Published 2 Dec 2019 in stat.ML and cs.LG

Abstract: We aim to identify the generating, ordinary differential equation (ODE) from a set of trajectories of a partially observed system. Our approach does not need prescribed basis functions to learn the ODE model, but only a rich set of Neural Arithmetic Units. For maximal explainability of the learnt model, we minimise the state size of the ODE as well as the number of non-zero parameters that are needed to solve the problem. This sparsification is realized through a combination of the Variational Auto-Encoder (VAE) and Automatic Relevance Determination (ARD). We show that it is possible to learn not only one specific model for a single process, but a manifold of models representing harmonic signals as well as a manifold of Lotka-Volterra systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.