Papers
Topics
Authors
Recent
2000 character limit reached

Combining MixMatch and Active Learning for Better Accuracy with Fewer Labels (1912.00594v2)

Published 2 Dec 2019 in cs.LG and stat.ML

Abstract: We propose using active learning based techniques to further improve the state-of-the-art semi-supervised learning MixMatch algorithm. We provide a thorough empirical evaluation of several active-learning and baseline methods, which successfully demonstrate a significant improvement on the benchmark CIFAR-10, CIFAR-100, and SVHN datasets (as much as 1.5% in absolute accuracy). We also provide an empirical analysis of the cost trade-off between incrementally gathering more labeled versus unlabeled data. This analysis can be used to measure the relative value of labeled/unlabeled data at different points of the learning curve, where we find that although the incremental value of labeled data can be as much as 20x that of unlabeled, it quickly diminishes to less than 3x once more than 2,000 labeled example are observed. Code can be found at https://github.com/google-research/mma.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub