Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How Should I Orchestrate Resources of My Slices for Bursty URLLC Service Provision? (1912.00579v4)

Published 2 Dec 2019 in cs.NI and eess.SP

Abstract: Future wireless networks are convinced to provide flexible and cost-efficient services via exploiting network slicing techniques. However, it is challenging to configure network slicing systems for bursty ultra-reliable and low latency communications (URLLC) service provision due to its stringent requirements on low packet blocking probability and low codeword error decoding probability. In this paper, we propose to orchestrate network resources for a network slicing system to guarantee a more reliable bursty URLLC service provision. We re-cut physical resource blocks (PRBs) and derive the minimum upper bound of bandwidth for URLLC transmission with a low packet blocking probability. We correlate coordinated multipoint (CoMP) beamforming with channel uses and derive the minimum upper bound of channel uses for URLLC transmission with a low codeword error decoding probability. Considering the agreement on converging diverse services onto shared infrastructures, we further investigate the network slicing for URLLC and enhanced mobile broadband (eMBB) service multiplexing. Particularly, we formulate the service multiplexing as an optimization problem to maximize the long-term total slice utility. The mitigation of this problem is challenging due to the requirements of future channel information and tackling a two timescale issue. To address the challenges, we develop a joint resource optimization algorithm based on a sample average approximate (SAA) technique and a distributed optimization method with provable performance guarantees.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube