Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fooling the Crowd with Deep Learning-based Methods (1912.00142v1)

Published 30 Nov 2019 in cs.HC

Abstract: Modern, state-of-the-art deep learning approaches yield human like performance in numerous object detection and classification tasks. The foundation for their success is the availability of training datasets of substantially high quantity, which are expensive to create, especially in the field of medical imaging. Recently, crowdsourcing has been applied to create large datasets for a broad range of disciplines. This study aims to explore the challenges and opportunities of crowd-algorithm collaboration for the object detection task of grading cytology whole slide images. We compared the classical crowdsourcing performance of twenty participants with their results from crowd-algorithm collaboration. All participants performed both modes in random order on the same twenty images. Additionally, we introduced artificial systematic flaws into the precomputed annotations to estimate a bias towards accepting precomputed annotations. We gathered 9524 annotations on 800 images from twenty participants organised into four groups in concordance to their level of expertise with cytology. The crowd-algorithm mode improved on average the participants' classification accuracy by 7%, the mean average precision by 8% and the inter-observer Fleiss' kappa score by 20%, and reduced the time spent by 31%. However, two thirds of the artificially modified false labels were not recognised as such by the contributors. This study shows that crowd-algorithm collaboration is a promising new approach to generate large datasets when it is ensured that a carefully designed setup eliminates potential biases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube