Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Automated Coronary Artery Atherosclerosis Detection and Weakly Supervised Localization on Coronary CT Angiography with a Deep 3-Dimensional Convolutional Neural Network (1911.13219v3)

Published 26 Nov 2019 in eess.IV and cs.LG

Abstract: We propose a fully automated algorithm based on a deep learning framework enabling screening of a coronary computed tomography angiography (CCTA) examination for confident detection of the presence or absence of coronary artery atherosclerosis. The system starts with extracting the coronary arteries and their branches from CCTA datasets and representing them with multi-planar reformatted volumes; pre-processing and augmentation techniques are then applied to increase the robustness and generalization ability of the system. A 3-dimensional convolutional neural network (3D-CNN) is utilized to model pathological changes (e.g., atherosclerotic plaques) in coronary vessels. The system learns the discriminatory features between vessels with and without atherosclerosis. The discriminative features at the final convolutional layer are visualized with a saliency map approach to provide visual clues related to atherosclerosis likelihood and location. We have evaluated the system on a reference dataset representing247 patients with atherosclerosis and 246 patients free of atherosclerosis. With five-fold cross-validation,an Accuracy = 90.9%, Positive Predictive Value = 58.8%, Sensitivity = 68.9%, Specificity of 93.6%, and Negative Predictive Value (NPV) = 96.1% are achieved at the artery/branch level with threshold 0.5. The average area under the receiver operating characteristic curve is 0.91. The system indicates a high NPV, which may be potentially useful for assisting interpreting physicians in excluding coronary atherosclerosis in patients with acute chest pain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.