Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Resource Allocation for Secure URLLC in Mission-Critical IoT Scenario (1911.13154v2)

Published 29 Nov 2019 in eess.SP, cs.IT, and math.IT

Abstract: Ultra-reliable low latency communication (URLLC) is one of three primary use cases in the fifth-generation (5G) networks, and its research is still in its infancy due to its stringent and conflicting requirements in terms of extremely high reliability and low latency. To reduce latency, the channel blocklength for packet transmission is finite, which incurs transmission rate degradation and higher decoding error probability. In this case, conventional resource allocation based on Shannon capacity achieved with infinite blocklength codes is not optimal. Security is another critical issue in mission-critical internet of things (IoT) communications, and physical-layer security is a promising technique that can ensure the confidentiality for wireless communications as no additional channel uses are needed for the key exchange as in the conventional upper-layer cryptography method. This paper is the first work to study the resource allocation for a secure mission-critical IoT communication system with URLLC. Specifically, we adopt the security capacity formula under finite blocklength and consider two optimization problems: weighted throughput maximization problem and total transmit power minimization problem. Each optimization problem is non-convex and challenging to solve, and we develop efficient methods to solve each optimization problem. Simulation results confirm the fast convergence speed of our proposed algorithm and demonstrate the performance advantages over the existing benchmark algorithms.

Citations (111)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.