Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimization of Weighted Completion Times in Path-based Coflow Scheduling (1911.13085v2)

Published 29 Nov 2019 in cs.DS

Abstract: Coflow scheduling models communication requests in parallel computing frameworks where multiple data flows between shared resources need to be completed before computation can continue. In this paper, we introduce Path-based Coflow Scheduling, a generalized problem variant that considers coflows as collections of flows along fixed paths on general network topologies with node capacity restrictions. For this problem, we minimize the coflows' total weighted completion time. We show that flows on paths in the original network can be interpreted as hyperedges in a hypergraph and transform the path-based scheduling problem into an edge scheduling problem on this hypergraph. We present a $(2\lambda + 1)$-approximation algorithm when node capacities are set to one, where $\lambda$ is the maximum number of nodes in a path. For the special case of simultaneous release times for all flows, our result improves to a $(2\lambda)$-approximation. Furthermore, we generalize the result to arbitrary node constraints and obtain a $(2\lambda\Delta + 1)$- and a $(2\lambda\Delta)$-approximation in the case of general and zero release times, where $\Delta$ captures the capacity disparity between nodes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.