Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attributional Robustness Training using Input-Gradient Spatial Alignment (1911.13073v4)

Published 29 Nov 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Interpretability is an emerging area of research in trustworthy machine learning. Safe deployment of machine learning system mandates that the prediction and its explanation be reliable and robust. Recently, it has been shown that the explanations could be manipulated easily by adding visually imperceptible perturbations to the input while keeping the model's prediction intact. In this work, we study the problem of attributional robustness (i.e. models having robust explanations) by showing an upper bound for attributional vulnerability in terms of spatial correlation between the input image and its explanation map. We propose a training methodology that learns robust features by minimizing this upper bound using soft-margin triplet loss. Our methodology of robust attribution training (\textit{ART}) achieves the new state-of-the-art attributional robustness measure by a margin of $\approx$ 6-18 $\%$ on several standard datasets, ie. SVHN, CIFAR-10 and GTSRB. We further show the utility of the proposed robust training technique (\textit{ART}) in the downstream task of weakly supervised object localization by achieving the new state-of-the-art performance on CUB-200 dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Mayank Singh (92 papers)
  2. Nupur Kumari (18 papers)
  3. Puneet Mangla (8 papers)
  4. Abhishek Sinha (60 papers)
  5. Vineeth N Balasubramanian (96 papers)
  6. Balaji Krishnamurthy (68 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.