Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Equivalence and Characterizations of Linear Rank-Metric Codes Based on Invariants (1911.13059v2)

Published 29 Nov 2019 in cs.IT and math.IT

Abstract: We show that the sequence of dimensions of the linear spaces, generated by a given rank-metric code together with itself under several applications of a field automorphism, is an invariant for the whole equivalence class of the code. The same property is proven for the sequence of dimensions of the intersections of itself under several applications of a field automorphism. These invariants give rise to easily computable criteria to check if two codes are inequivalent. We derive some concrete values and bounds for these dimension sequences for some known families of rank-metric codes, namely Gabidulin and (generalized) twisted Gabidulin codes. We then derive conditions on the length of the codes with respect to the field extension degree, such that codes from different families cannot be equivalent. Furthermore, we derive upper and lower bounds on the number of equivalence classes of Gabidulin codes and twisted Gabidulin codes, improving a result of Schmidt and Zhou for a wider range of parameters. In the end we use the aforementioned sequences to determine a characterization result for Gabidulin codes.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube