Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Oracle Knowledge Distillation with Neural Architecture Search (1911.13019v1)

Published 29 Nov 2019 in cs.LG and stat.ML

Abstract: We present a novel framework of knowledge distillation that is capable of learning powerful and efficient student models from ensemble teacher networks. Our approach addresses the inherent model capacity issue between teacher and student and aims to maximize benefit from teacher models during distillation by reducing their capacity gap. Specifically, we employ a neural architecture search technique to augment useful structures and operations, where the searched network is appropriate for knowledge distillation towards student models and free from sacrificing its performance by fixing the network capacity. We also introduce an oracle knowledge distillation loss to facilitate model search and distillation using an ensemble-based teacher model, where a student network is learned to imitate oracle performance of the teacher. We perform extensive experiments on the image classification datasets---CIFAR-100 and TinyImageNet---using various networks. We also show that searching for a new student model is effective in both accuracy and memory size and that the searched models often outperform their teacher models thanks to neural architecture search with oracle knowledge distillation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.