Papers
Topics
Authors
Recent
2000 character limit reached

Neural Chinese Word Segmentation as Sequence to Sequence Translation

Published 29 Nov 2019 in cs.CL | (1911.12982v1)

Abstract: Recently, Chinese word segmentation (CWS) methods using neural networks have made impressive progress. Most of them regard the CWS as a sequence labeling problem which construct models based on local features rather than considering global information of input sequence. In this paper, we cast the CWS as a sequence translation problem and propose a novel sequence-to-sequence CWS model with an attention-based encoder-decoder framework. The model captures the global information from the input and directly outputs the segmented sequence. It can also tackle other NLP tasks with CWS jointly in an end-to-end mode. Experiments on Weibo, PKU and MSRA benchmark datasets show that our approach has achieved competitive performances compared with state-of-the-art methods. Meanwhile, we successfully applied our proposed model to jointly learning CWS and Chinese spelling correction, which demonstrates its applicability of multi-task fusion.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.