Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints (1911.12959v3)

Published 29 Nov 2019 in cs.DS

Abstract: We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / \varepsilon2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder and Feldman (Math of OR 2019), that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman et al. (NeurIPS 2018). It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(\frac{\log k + \log (1/\alpha)}{\varepsilon2})$ per element.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube