Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Patch Reordering: a Novel Way to Achieve Rotation and Translation Invariance in Convolutional Neural Networks (1911.12682v1)

Published 28 Nov 2019 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance on many visual recognition tasks. However, the combination of convolution and pooling operations only shows invariance to small local location changes in meaningful objects in input. Sometimes, such networks are trained using data augmentation to encode this invariance into the parameters, which restricts the capacity of the model to learn the content of these objects. A more efficient use of the parameter budget is to encode rotation or translation invariance into the model architecture, which relieves the model from the need to learn them. To enable the model to focus on learning the content of objects other than their locations, we propose to conduct patch ranking of the feature maps before feeding them into the next layer. When patch ranking is combined with convolution and pooling operations, we obtain consistent representations despite the location of meaningful objects in input. We show that the patch ranking module improves the performance of the CNN on many benchmark tasks, including MNIST digit recognition, large-scale image recognition, and image retrieval. The code is available at https://github.com//jasonustc/caffe-multigpu/tree/TICNN .

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com